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N EFFECTS OF THE PLASMA SHEATH ON ANTENNA PERFORMANCE!

C. T. Swift
NASA Langley Research Center
Langley Station, Hampton, Virginia

H. Hodara
National Engineering Science Company
Pasadena, California

INTRODUCTICN

Many scientific investigations have been pursued in the past few years
concerning the radiation characteristics of slotted antennas immersed in a
plasma. This research has, of course, been prompted by attempts to explain or
predict electromagnetic effects which may occur during the reentry of space
vehicles.

The analysis of the problem is conceptually simple, i.e., the wave equa-
tion is solved, and all unknown coefficients are found by applying the electro—
magnetic boundary conditions at the air-plasma interface and at the aperture.
However, unless idealized models of the vehicle are chosen, the evaluation of
the complicated solutions of the wave equation becomes a major obstacle. In
order to avoid these problems, models chosen by most investigators have been of
simple geometry, namely, the coated slot on the flat ground plane and the slot
on a conducting cylinder. The former is applicable to the reentry problem pro-
vided the dimensions of the vehicle are much greater than a wavelength, and the
latter is a reasonable choice if the wavelength is comparable to vehicle
dimensions.

Radiation pattern computations constituted the earlier work in this field.
The slot on the flat ground plane, coated with a gyro-plasma was analyzed by
Hodara (refs. 1 and 2), and the coated cylinder was originally solved by Wait
(ref. 3). Others (refs. 4, 5, 6, 7, 8, 9, and 10) have also examined these
geometries from different viewpoints or to extend the results. The final
expressions for the patterns reduce to relatively simple forms because of cer-
tain asymptotic expansions which may be used in the far field. At least for
plane geometry, patterns may be computed easily without the aid of electronic
computing machines. The results are valuable because changes in the angular
distribution of energy can be predicted.

However, the radiation patterns do not give a complete description of the
problem. For instance, if the aperture is backed by a waveguide, the amount of
povwer reflected back into the guide cannot be established by the patterns alone.
Such information requires knowledge of the input admittance which follows from
a study of the near fields.

IThis work was partially sponsored under Contract NAS1-4623

L-4787
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Recently, excellent work on this subject has been done by Villeneuve |,
(ref. 11), Galejs (refs. 12, 13, and 14) and Compton (ref. 15). All three con-

sidered a waveguide opening onto a flat ground plane; however, the differences
in the formulation and results made each effort a contribution.

The only published near-field results for the cylinder is Wait's treatment
of the thin half-wave axial slot radiating into free space (ref. 3, p. 48).

i In this paper, the near fields of both geometries are investigated via a
transfer function which algebraically relates the unknown aperture fields to
those in free space. This transfer function is a matrix of computable numbers
which are specified entirely by the plasma parameters, regardless of whether
the plasma is homogeneous or inhomogeneous. It is important to note that the
matrix is independent of the aperture excitation. Therefore, when a given
plasma condition is analyzed, any aperture problem can be solved with no more
degree of difficulty than the same aperture radiating into free space. The
other advantage of this type of formulation is that better near-field approxi-
mations may be made without repeating the plasma solution.

To illustrate the use of these techniques, the admittance of long slots
on cylinders and planes is computed. The results are compared, and the effects
induced by the inhomogeneous plasma are noted. Although no computations for
finite apertures are given, expressions are derived.

An appendix is also included which outlines an exact treatment of this
parallel plate waveguide opening onto a flat ground plane.

RADIATION FROM SLOT ANTENNAS ON A FLAT GROUND PLANE

I. Infinite Slot with TE, Polarization

The model shown in figure 1 consists of a conducting ground plane onto
which is cut a long radiating slot excited so that H is directed along the
slot. The fields are assumed to be uniformly distributed along the slot, and
the exponential function ed®t 15 chosen to describe the time dependence. The
complex permittivity of the plasma 1s assumed to vary only in a direction
normal to the ground plane.

The scalar wave equation which describes the magnetic field in the inhomo-
geneous plasma is

P (y,z) 32 I(y,z) 1 gc HEI(y,z)
s ) ) I -
ay2 + BZE -z d_z _lc.a..;____ + (szoe(z)Hx (y,z) =0 (l)

The above equation is partially solved by expressing HxI as a Fourler inte-
gral, i.e.,
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which leads to the total differential equation.

o —
E& - L d_egx_ + wzuoe(z) - k.yﬂﬁ-x =0 (3)

dz2 € dz dz

The dielectric constant € is an arbitrary function of position; therefore
equation (3) must be solved by numerical means. However, since equation (3) is
a second-order differential equation, an initial value of Hy and its first

derivative must first be specified before any numerical work can be performed.
These starting conditions are found by constructing functional solutions of Ey

and Hy in regions I and II, and requiring continuity of the components at the
interface =z = zp. )

In the plasma, the fields are of the form,
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And, in unbounded free space;

1
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The preceding choice of roots is required in order to assure outgoing, dapped
waves at 2z = o,

.

The boundary conditions at 2z = z, requires that

B(v,me) = Bl () -
7 .

=750 = 3 e

Therefore, the normalized initial value of Hy and its derivative is:

ﬁxk s Z0o

8(kyr20) = =

Hp (ky)ejkzzo
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o (1}2_3,)2 o ko < i 5 (8)
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If the differential equation (3) is now divided by HT(ky)ejkzZo, normalized
values of Hy can be numerically computed at z = O.

Y

The normalization constant, HT(ky)eijZO is found by completing the
boundary conditions at z = Q.

It is of interest to note the plasma problem has been solved without any
detailed thoughts given to the aperture or the method of feeding the aperture.

The transforms of the external field at the aperture are:

N
Ee(y,0) = &(kcy> 0)Bip(ky) eF2%o
(9)
,0) = —29 o1 (ky,0) Hp( k) ed¥2Z0
By (ky,0) m(y )Bin(ky) e
© J
In matrix form, equation (9) becomes:
By (ky,0) L1 (ky) .
= Jkz20
= Hrpe (10)
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where the matrix elements are known numbers which are defined through equa-~
tions.(9). Equation (10) is nothing more than a transfer function which
relates the unknown fields at the aperture to the unknown free-space Fourier
coefficient HT(ky). Therefore when the matrix elements are specified, the

coated antenna is no more complicated to solve than the uncoated problem.

If the aperture is fed by a parallel plate waveguide, excited such that
only TEy modes exist in the guide, the formal solution follows by con-

structlng interior (z < 0) fields and requiring continuity of H and Ey at
= 0. The interior solution will contain one unknown, namely, the reflection

coefficient; therefore, the boundary conditions should, in principle, give both
I' and HT(ky)~ Such a general formulation is outlined in appendix T.

The general equation developed in appendix I has not been programed; how-
ever, a first-order estimate of I' and Hp can be achieved by intelligently

guessing the electric field at the aperture. If a TEM mode is incident on the
aperture, a reasonable guess for Ey(y,0) is

Ey(Y;O) = ng (ll)

A construction of the field solutions in the guide to relate the aperture
voltage V, to the reflection coefficient is the next natural step. Use of

equation (10) would then give a first-order estimate of both I' and Hp. How-
ever, it is more conventional to solve for the external admittance of the guide.
This can also be done through use of equation (10).

The Fourier transform of equation (14) is

k. 2 sin o}
By{y,0) = Voo O Y 2 sin(iy 3) (12)

O
ky

oo

Therefore, equation (10) may be expressed in terms of Vo as follows:

L1y
2 Y 2
= Voe —_— s (13)
— ky b
Ey (ky,0) 1 2

The power per unit length radiated by the aperture is

~b/2
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where the dual integral representation is a statement of Parseval's theorem.
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Using equations (13) and (14), the external aperture admittance per ufiit
length is )

. D E)
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(15)

In order to compute radiation patterns, Hxn(y,z), hence Hl‘(ky>: must be
evaluated at points far from the aperture. From equations (10) and (12),

b
-J(k -—+kz) b
Ve Y 27 72%0) sin ky§

HT(k) = 20 (16)
Yy
L1o(ky) ky 3
Therefore, with the substitutions
z = p cos P
(17)
¥y = p sin ¢

the expression for HyX(p,) becomes

3 b
I v e e-J(ky §+kZZ°) jp(kz cos P +ky sin ¢)
B (p,P) = -2-:% /_m ng(ky) e dk, (18)

where it has been assumed that

: b
sin (ky —2-)

ky 3

~ 1 (19)

The integral (18) may be solved by the method of stationary phase. (See
ref. 1 for application to this geometry.) The result is




) J p+% sin ¢ s -
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JEX; © g'(ig - sin ¢)

where the magnitude of the terms in parentheses is the pattern expression, i.e.,

e£0)| cos ¢ (21)

M)

P(B) =X,

II. Infinite Slot With TMy Polarization

The geometry and appropriate field representation is shown in figure 2.
If the fields are polarized such that the electric field E(y,z) is directed

along the x-axis the wave equation for E,l is

I 2m I
ey + e + wzuerxI =0 (22)
o2 | 22

As before, FEyl(y,z) and E,(y,z) are defined through the Fourier
representation,

Exl = é&-h/:m F(ky,z)ejkyydky
\ (23)

[» ] 'k k
sl = & [ mn()e e W,

Use of equations (23) then reduces equation (22) to the following equation
which must be solved numerically

Ee_félsyzg_Z) b [Puocla) - 7]z = 0 (24)
Z

subject to the starting conditions,
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F(ky,z)
flk = :
( y:Z) ET(ky)eJkZZO

In matrix form, the transformed field solutions at z = 0 are given by

By (ky»0) £ (ky,0)

I

Bp (ky) eIi2%0 (26)

Hy (ky. 0) - j(suof' (ky: o)

Now, 1f the electric field at the aperture corresponds to a TE; excitation,
the following transform pailrs are defined at z = O

~
Ex'(y,0) = Eg cos(%y-> ~bsyst
> (27)
E.x(ky,-o) =+ Ey + 2nb
J
and the aperture admittance per unit length is
o 2 b
Y, - |—E—i:i§ ] jzkglhtbg f cos (ky 2) f'(ky,gdk (28)

O |x2 - (kyb)2:l2 £(ky0)

The radiation fields, as derived from a stationary phase evaluation of Ex]I
is given by

-k oxb cos kg R sin @
E(p,§) T Eoe 't E—— &~IK2%0 2

Pop f<1;—z = -sin ¢,o> E@ - (kob sin ¢)2]

(29)




Yo III. The General Aperture

The development of a general aperture on a ground plane, shown in fig-
ure 3, parallels the development given above, except a double Fourier integral
representation is necessary because the fields depend on all three cartesian
coordinates. This problem was approached by superimposing TE and TM vector
potentials. By a straightforward application of the boundary conditions, it
can be shown that the pertinent differential equations are

~
2
df+k02€(2)_32f=0
az? €o
. ) (30)
a de(z) 4 ez )
g _ 1 ()_8_+k02 )-32g=o
az2 e€(z) daz a= €0 )
With starting conditions
f(Zo)=l W

Jeoys? - 1 8] >1
KoL - B2 |8l <1
5 (31)
Jon®(z0) (62 - 1 8] >1

o) 5 <2

where B 1is defined through the transformation ky = koB cos a and
ky = koB sin a.

Note that equations (30) and (31l) are identical to the equations and
starting conditions which were used for the infinite slot. It can therefore be
concluded that when the external plasma problem is solved for the infinite slot
of TE and T polarization, it is automatically solved for the finite
aperture.

The double Fourier transform of the aperture fields may also be set up
in matrix form defining a transfer function which relates the aperture fields
to the free—space fields. This relationship is



-jk.g'(0)e,
~Jkyg'(0)e :
o Ky8 (0)eo kxf(o)\]“_oeg EI\eJkZZo
€(0)k,
- 1
koB° _— -jky ' (0)e
0 kyg(O)feofuo O -——E;Ei_l_Q 0
0
-jkyT'(0)e jk,z
- TRy VY% z20
0 kxg(Ohfeowo O T Hpe
(32)
If the aperture field corresponds to a TEpy; excitation, then
=3 Y
Ex = 5 o8 =
(33)
By = 0
The transforms of equations (33) are
= b/2  pa/2 . . )
= -Jjk - JKyx
Ex‘—‘ f f COST—rzeJyyede.xdy
-b/2 b
- kya (5)4')
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2
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And, the aperture admittance is
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~

Ex*(kx:ky:o)EQ(kx’ky’O),dkx ik,

IV (2ﬁ)2 f f

Vo |2

(35)

k/ﬁzﬁ J[ E* (o, 8,0)Hy(a,8,0)
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Equafigns (32) and (34) may be used to express Ep and Hp in terms of Vp;
therefore, Hy(kx,ky,o) may also be expressed in terms of Vg, i.e.,

= 2 2
= _ JEXY kX k g (O) i
M) - ) (- @) 5) o

If equations (34) and (35) are converted to polar coordinates and substituted
into equation (35), the final admittance expression is:

- ) 5

a
o5 cos(—g— sin a) sin(il- cos a)
Y = 5¥of kobf f 2

(kob sin a)2 (&%E cos a)

X -c052a<i;§> <(0) + sin a(é'f> B dB da (37)

O

RADIATION FROM SLOT ANTENNAS ON A CYLINDRICAL GROUND PLANE

IV. The Infinitely Long Axial Slot on a Cylinder

The geometry is shown in figure 4. An infinitely long slot is cut into a
long conducting cylinder with H directed along the axis. The structure is
coated with a plasma, whose dielectric properties vary radially. It is assumed
that the fields are independent of 2z so that H, in regions I and IT can be
described by the following Fourier series in azimuth

HzI(p;¢) = i Hmz(p)e-jm¢
) (8)

H,%(p,8) = Z (2)(kop) ‘jm¢J

m==0

where the radial function, BHpy(p) satisfied the differential equation

14/.4d 1 de GHmg olelp) | m® _
P (Am) R T R e (kop)%ﬂ’“ -° 9
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By normalizing with respect to C,, equation (39) can be numerically inte-

grated provided the boundary conditions are met at p = b. The continuity
requirement for H; and E¢ gives

N
b
bz (b) = Hmz( ) = 1,(2)(xop)
(L0)
a Hp(p) _e(®) (2)°
mz (b) = dp Cm - €—OHm (kob)
p=b
S
Equations (39) and (40) then yield normalized field solutions, hp(a) and
hy'(a) at the aperture.
Since the azimuthal component of the electric field in the plasma 1is
given by
= - Jjm & (o) -
E¢I(O:¢) = E Em¢(p)e Jnp = -T_J;__ ZL__ EE%?L__Q Jmp (41)
L Joe(p) fzmo 9P
the field transforms at the aperture can immediately be written as
Hyz(2) hpyz (a)
= Cn (42)

Epg(a) _—hmee( ) "(a)

The power per unit length radiated by the aperture is

J e (2, )8,  (a,8)ap
_¢O/2 0] »P)bz\a,

d
o~

I
roje

|
njo

Z Z Em¢ (a)Hm¢I(a) f oH(m! —m)¢d¢

m=-cc m'=

o0

- ) Z Em¢ “(a)nz ' (a)8y," = ma i Eng" Hpz' (a) (43)

m=—x '

where the equivalence of the integral over physical space to the sum over mode
space 1s nothing more than Parseval's theorem in cylindrical coordinates.
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It is now assumed that the electric field distribution at the aperture is

Eg(a,p) = ‘—;9 (1)

whose transform is

I

NE im
L[5 sy

(8
2\:; Sl(:—lég—) (45)

From equations (42) and (45) the transform of H,L at the aperture is

s1n(2) o

Eng(a)

Hmz(a) = -J(DE(a) O (m¢) h x(a) ()'"6)
mz.
Therefore, the admittance per unit length is:
o 5 [
2P _  .koYo €(a jiil sin\— hy (a) (47)

Y, = 2= \
i |V0|2 ona €, L= cﬁﬁa hp'(a)
2

The radiation pattern expression is found by solving for Cp, substituting
into the second of equations (38), and evaluating H,(p,p) in the far field

(i.e., by asymptotically expanding the Hankel function). From equations (42)
and (45))

poea) , Snlge) (48)

“n = Sraby' (a) © (n;fég)
2

Therefore, Hzn(p,¢) in the far field is given by

sin ¢ ~im(p -3
Hy(p,@) = -3520 ,?k%eJ(k°p e m_Z.w (mgo)) e:mg(af) (49)

The pattern is computed by taking the magnitude of the term in brackets.
13



V. The Arbitrary Aperture on a Cylindrical Ground Plane

The preferable method of approaching the problem of a general aperture
radiating into a radially varying plasma as shown in figure 5 would be to con-
struct the fields from axial TE and T™ components and numerically solve the
differential equations. However, such an attempt fails because the Maxwell
equations will not be satisfied.

As an alternative approach (ref. 16), the inhomogeneous plasma was
replaced by several homogeneous tandem layers judiciously chosen to fit the
given distribution. The development of the problem follows from a stralght-
forward generalization of Wait (ref. 3), and will therefore only be outlined
here.

Since each layer is homogeneous, the axial components of E and H com-
pletely specify the external problem, and can be written as follows:

S D

1 :Z:i e-jm¢ \/ﬁw uigFmi(kz,p)e_jkzzdkz
0

B (p,8,2) = —E—
J(Duoej_ M= ~co

il

> (50)

Hy1(p,8,2) 1S f uigGmi(kz,p)e'jkzzdkz

'jw“-oej_ m=-o .)

where the superscript 1 refers to the fields in the ith layer. When
i=1,2, ..., n, the radial solutions of equations (50) are:

Fmi(kz,p) = amiJm(uip) + Ami(uip)

(51)
Gml(kZ;ﬁD = bmiJm(uiD) + Bml(uip)
No standing waves exist in free space (i = n + 1); therefore, Fmi and Gm;
are of the form:
n+l
Fiy (kz; p) = CmHm(z) (uop)
(52)
2
6u™(kg0) = iy (o)

If equations (50) are used in connectlon with the Maxwell equations, the
azimuthal components of E and H can be computed, and the boundary condi-
tions can therefore be stated at each interface. TFrom the schematic shown in
figure 6, the boundary conditions at p = pj4q are:

1k
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. E¢i (pi+l’¢’ Z) = E¢1+1
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1]

(53)

(ranrtsr)
(1+l’¢’z)
By l("14&"’5’2)B
Y

=
©
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-
o
-
N
1

= B+ P14159 )

The fields are defined in terms of the unknown coefficients, ay, by, Ap, and
Bp; therefore, equations (53) can be expressed in terms of 4 X 4 matrices
relating the unknowns in the iR layer to those in the (i + 1)th layer, i.e.,

(ami\ ’;mi+:D
i i+l

E\jkiﬂ:l { :i > = []3 jki+l] ﬁé:iﬂ& (5k)
(Ba B+

where the A and B matrices are given explicitly in appendix IIT.

. i .
If another 4 X 4 matrix is defined such that [C jkl"'l] = [Ajkl"'l] EB jk1+l:|:

then it can easily be verified that

- f - n\
m am
1 ) n
IR o R TR -
By B
\. J oy

That is, the unknown coefficients in the first layer can be related directly to
those in the last layer by multiplying similar 4 x 4 matrices.

If the boundary conditions are completed at the air-plasma interface, and
if apl, Ag', bpl, and Byl are converted to field transforms at p = a, the

following transfer function is defined

15
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. Eij(m,kz B <Cm(§kz)>

Eng(2rkz) O (i)

. y, L )

where the 4 X 4 L-matrix is entirely composed of specified or computable param-
eters (dielectric constant, Bessel functions, etc.). The L-matrix is symboli-
cally defined in Appendix III. The admittance and patterns can be found by
completing the boundary conditions at the aperture, and algebraically solving
for the unknowns.

RESULTS

In order to compare the radiating characteristics of slots on flat and
cylindrical ground planes under typical reentry conditions, the electron den-
sity and collision frequency profile shown in figure 7 was chosen as a coating.
The slot on both ground planes was infinitely long, 0.4 inch wide (the width
of a standard X-band waveguide), and polarized with the magnetic field directed
along the slot. The patterns and input admittance were then computed via the
methods of sections I and IV.

The radiation patterns of the coated slot on a flat ground plane are shown
in figure 8. The behavior of the patterns as a function of frequency is sharply
divided at the peak plasma frequency of 10.76 gc. TFrequencies above this
exhibit definite off-axis maxima which progress toward the axis as the frequency
decreases. Whereas, below 10.76 gc, the maxima occur only at @ = 0, and the
radiation rapidly decays as a function of angle. The shifting of the maximum
and the differences in the pattern characteristics on either side of critical
frequency are exactly what one would expect if the coating were homogeneous with
a plasma frequency of 10.76 gc. However, the location of the pattern maximum,
which for a collisionless homogeneous plasma is given by the plane wave critical
angle

B = cos™L(fp/£)

does not correlate with the results of figure 8.

The radiation patterns of the coated cylinder are shown in figure 9.
Again, the radiation patterns have strikingly different characteristics,
depending upon whether the propagating frequency is greater than or less than
the peak plasma frequency. There is also a progression of the pattern maxima
above plasma resonance, but the location cannot be predicted as easily as the
plane case.

16




* « The external admittance of the cylinder is plotted as a function of fre-
guency in figure 10. Nineteen admittance points were computed in the frequency
interval of 10.0 to 11.8 gec, yet this number was insufficient to establish a
smooth curve because of small-scale fluctuations; nonetheless, some interesting
features are revealed. The most striking effect occurs in the region of peak
critical frequency, where the conductance and susceptance suddenly decrease.
Based upon some recent work by C. M. Knop, low values of admittance should be
expected at critical frequency.

At frequencies above resonance, the conductance rises rapidly, but the
susceptance remains relatively constant. As the frequency increases, both
curves smoothly approach the no-coating values, as they should. Below reso-
nance the curves are fluctuating too much to make any general comments.

In order to save computer time, the plane results were confined to the
five points shown in figure 10. The computations are not as extensive as those
for the cylinder; nevertheless, there are sufficient data to conclude that for
the parameters considered here, the admittance of a slot on a plane differs
from the cylinder by only a few percent over the entire freguency range.

If the losses are small (as they are for this plasma distribution), trapped
waves in azimuth are supported by the cylindrical structure at freguencies above
resonance. Therefore, it is conceivable that the wave interference within the
cylindrical coating could be such that the difference between the admittance of
this structure and that of a slot on a flat ground plane would be substantial.
The results of figure 10 seem to indicate that this is not so, at least for the
size cylinder considered here. It is of interest to note, however, that the
greatest differences in the admittance occur at frequencies above resonance,
which confirms the intuitive expectation.

The computations of the external admittance of a finite aperture, coated
with the inhomogeneous plasma, have not been done; however, the ratios

6,00 o (6,0
g'(B,O) f(B;O)

appearing in the integrand of equation (37) are given as a function of B in
tables I(a) through I(d). Using these tables, the double integral which defines
the admittance can be numerically evaluated.

The equatorial (6 = x/2) radiation patterns of a half-wave axial slot,
coated with a homogeneous plasma, are shown in figure 11, and were derived by
two independent methods. The points were derived from the bracketed term of
equation (49),2 and the solid curve was derived from the L-matrix of section V.
The explicit expression for equatorial pattern, in terms of the L-matrices from
the stationary phase evaluation (ref. 7) is

2In the equatorial plane, the patterns of a finite slot are identical to
those of an infinitely long slot (ref. 7).

17
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m=0 (l + Som)LM

The agreement 1s good; therefore, one method substantiates the other.

The elevation patterns shown in figure 12 were taken directly from the
results of W. V. T. Rusch (ref. 6), who based his treatment on a thin sheath
approximation. The use of this approximation assures that the solution within
the plasma may be expanded in a Taylor series about the thickness b-a. How-
ever, as the polar angle decreases from 90° to 09, this approximation becomes
invalid. The points on figure 12 were computed from the expression

0 cos<% cos e)“ i ji'leg

0\ .
P(e”‘) - 12sin 0 J 20 (1 + 85%) [Laolyy - LugLyn]

and were normalized with respect to Rusch's on-axis value of wfwp = 1.048

curve. There is reasonably good agreement at 6 = 70° and 0 = 90°, but the
results begin to deviate as 8 decreases. However, this was expected, so it
is reasonable to assume that the method can validly be extended to the admit-
tance problem.

CONCLUDING REMARKS

Methods have been developed whereby the radiation patterns and near-field
effects can be evaluated by solving the aperture and plasma problems inde-
pendently. As a special application of these techniques, infinitely long slots
on planes and cylinders, coated with a reentry plasma were analyzed, and the
following conclusions were noted:

(1) If the collision frequency is low, the peak value of the plasma fre-
quency determines the radiating characteristics of the aperture. At critical,
both the patterns and admittance undergo drastic changes.

(2) A nomogeneous plasma "equivalent" of the inhomogeneous plasma coating
given in figure T will give only general trends of pattern behavior.
p

(3) The external admittance of the particular slotted planes and cylinders
considered here differs by only a few percent.

Tables were also given, whereby the external admittance of a finite aper-
ture on a plane coated with the plasma of figure 7 can be computed by using
these tables in connection with the double integral (37).

3The positive or negative sign on j 1s chosen if ¢ is O or =,
respectively.

18




» . The solution finite aperture on a cylinder was formulated in terms of
matrix products and verified by comparing the radiation patterns with known
results.

ACKNOWLEDGMENTS

7

The authors wish to express their appreciation to W. D. Allison, B. P.
Latimer, and P. Hurst of NASA for their ccoperation in arriving at the compu-
tations given in this paper.

19



=

Hi
el

==

Rl
=l

X,¥52

20

APPENDIX T .
LIST OF SYMBOLS

slot dimension along the x-axis or radius of cylinder, as appropriate

slot dimension along the y-axis or radial distance to air-plasma
interface, as appropriate

electric field intensity
Fourier transforms of the electric field

electric field intensity at aperture of TMy slot

propagating frequency

plasma frequency, 8.97 X 105Jﬁ;
magnetic field intensity

Fourier transforms of magnetic field

field intensity of incident TEM mode in waveguide

free-space wave number

Cartesian mode numbers

azimuthal mode numbers

index of refraction or discrete mode number in waveguide, as
appropriate

electron density

power

spherical coordinates
radial mode numbers
applied potential on slot

Cartesian coordinates




admittance of free-space,

admittance

impedance of free-space, =

plasma thickness

reflection coefficient

Kronecher delta 0 (m % n)
1 (m=n)

permittivity

permittivity of free space

free-space wavelength
permeability of free space
collision frequency
cylindrical coordinates
plane-wave critical angle

angular width of slot

w angular frequency

* complex conjugate
Superscripts:

I fields within the plasma
I fields in free space

21




i fields within the ith dielectric layer .

n fields within the n®h dielectric layer

Subscripts:

i physical parameters within the ith gielectric layer

1 per unit length

X,¥,% vector components in the principal Cartesian directions
p,¢,z vector components in the principal cylindrical directions

A prime denotes differentiation with respect to z or p, as appropriate.
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s APPENDIX IT

EXACT FORMULATION OF THE INFINITE SLOT ON THE GROUND PLANE

RADTATING INTO AN INHOMOGENEOUS PLASMA

Assuming a TEM wave incident upon the aperture shown in figure 1, the
pertinent internal fields at 2z = O are given by

Hy(y,0) = HOE. + i Ap cos(il—g—y—)]
n=0

(1I-1)
OH =
Ey(y,0) = L7 HOl-ZAnk—Ecos(M)
Jweo 0z Yo 7= ko b
where
N\
2 o 2 k nit
kpy = ko (’g‘) l ol >_b—
5 (11-2)
ny\2 2 k | nx
Ky = 3 (’:.T) - kg I°<Ta_
J
The external fields at the aperture are, from equation (10)
o h
ik, z5 Jjk
Hy(y,0) = -21&- f Lll(ky)HTeJ 22065 qkc,
5 (1I-3)
B0) < L [ 1agfsy e rreetvas,
J
The continuity requirement on Ey gives
o] . ol
1 JkzZo JeyYy . _Ho ( )kﬂ. co (m) TT-4
or f . Tpo(iey)Bpe” "0 YTy, nZO . o\ (W

. |
Multiplying equation (II-4) by e~3¥y Yay, and integrating with respect to y
gives

23




b .
kyzo _ -H Zm ky ny _-jkyy
L12 (ky)HTeJ 20 = Y—o (891'1 - An)-k—z-'- f cos —b-— e ¥ dy (11—5)

o] n:o o O

where the integration of the left-hand side of the above was extended over all
space because Ey = 0 on the ground plane.

It is now convenient to define

b . -ik.b .
1 f oy +FIKyYae - Y -1)Red¥yP _ g - ¢ II-6
v Jg cos —= e Vg (kyb)2 g (mr)gl:( Yle ] n(k_y) ( )

which has the property

f‘“ Cn(ky)cl*(ky)dky = 'g'anl (1 + 50“) (11-7)

-0

that is, Cn(ky) is an orthogonal function. Therefore, in terms of Cn(ky),
the continuity of E gives the following equation

gf oJkzZ0 _ -b E:: (Son _ Aﬂ)EQECn*(ky) (T1-8)

YoLlio(ky) nzo
The boundary conditions for Hy 1s a little more difficult to apply

because the magnetic field involves "mixed" boundary conditions, i.e., Hy 1is

continuous at the aperture, and equal to the unknown surface current on the
ground plane. The boundary condition must therefore be applied only over the

ik
region where the aperture exists. This is done by expanding eV in a
cosine series over the aperture; i.e.,

e TKyY _ E By cos E%X 0Sy<Sho (11-9)
=0

Use of orthogonality gives

_ 2 _
By = mcn(ky) (I1-10)

Therefore,

ol




o]
Jkyy _ 2 nity
. e = E ki) cos —% (I1-11)
o (1 + sonj n{ky) b

Use of equation (II-11) in the boundary condition for Hy, gives
o] [v0] o0
jKzZ 2 nxy
Hy Z (Son + An)cos oy oo L f dkyIng (k ed 270 Z —Cp cos —=-
= v on J_ ¥ (i) %5 (1 + 507) (i) 5

(I1-12)

or
oo
ik, 2
(aon + An> SN S Jf Inq (ky I1 oJkz ocn(ky (I1-13)
ﬁ(l N Bon) i ( )Ho )dky
By substituting equation (II-8) into equation (II-13),
6511 A b wa o L1 \ky (k ) }f: 59 _ A EEEC *(k )
on)- -1
Yo (L + 807) Yo ¥ Lnp(ly) "NV g VO Wk TNV

(IT-14)

Now, let

e ey S By

The equation (II-14%) becomes:

(Bon + An) =5 (5oq - Aq)th (11-16)
q=0
or,.
=]
) (an + an)Aq = I - 8,° (11-17)
q=0
Therefore, since the coefficient matrix, an can be computed after I,7 and

I1o» are specified, the problem reduces to solving an infinite matrix (II-16)
in order to compute the unknown Aq's.
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Upon applying the boundary conditions (53) at p =

APPENDIX ITIY

THE FINITE APERTURE RADIATING INTO '

LAYFRED DIELECTRICS

Pi41, ‘the matrix

relationship between the coefficients in the ith and the (i + 1)st layer can
be expressed in many ways; however, if closed form expressions are desired,
the most profitable way seems to be

(23]

[Bjki+l:| _

koPuspy,3

Tn(usp141) B2 (a0141) 0 0
us ' (g p141) uiHm(2)'(uipi+l) 0 0
0 0 Tn(uge1.41) Bn(2) (w141
0 0 3y (g 0541) wEn (2 (uypy )

2
kju
(B el

) Jtueom.kzk12<l )

, . Joou gmk k2 Jou k2
LCPSTLY (“1+1°1+1) ‘H+1Bm(2) (“1+1°1+1) " °—£(1 - —15 Jm(uiﬂoiu) —gc’—mk-i 1- —1—5 Hm(z)(“i+1°1+1)
150441 k41 Uy P41 LS¥Sh
kqu. kju.
0 0 1941 A K 2% (2)
(k1+1u1>2 Jm(“i+1°1+1) (k1+1u1 Bp'?) (g 410441)
X2 Joe ik, kg 2 k42 (2 k. Kk '
Im{ug4p - | - e ) —t ) g (_1_ (2)
k1+12> m( {41 1+l) ko2“1291+1 k1+12 Bp (ui+191+1) “i+l(ki+ m (“1+1°1+1) U4 B, Hy (“j+1°1+])

p

(I1I-1)

kyu (2)
(48F 1 (1 11,0) : 0

(111-2)

where the [Ajki+{] and [éjki+i] matrices are defined in equation (54). The

C matrix was defined as

[Cjki+l] _ I:Ajki+l:l -1 @jki+li|

(11I-3)

4Excerpts from reference 16 were used in this appendix.
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where the inverse of the A-matrix is given by

-

;g“i°1+lﬂm(2)'(ui°1+1) - 5505 4180 ®) (uypy4) 0 o -

o -3 pyy19m' (WP141) 35p1419m (2 0y 1) o .
EJK ] : i ° %Llp“lﬂm(zy(“ipiﬂ) '312["1+1Em(2)("1°1+1)
- ’ ° ~3pintn’ (MP1a) S TR ACIINY ]
(TII-4)

If equation (55) is carried one step further, it follows that

ramﬂ (ow

1
\ :1 B = [Cjkz:l [Cjk5] .. [Cjkn— J Léjkri‘ _-Cjkn+lJ < °:> (I11-5)
(Bu =)

where use was made of the fact that

amn+l =0 h
A, n+l _ Cm
> (1TI-6)
bmn+l -0
n+l _
Bp d“b

describe outgoing waves in free space. From the explicit form of the field
transforms, it can be shown that
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where

. .
Bz, (a; kzﬂ (a'mlw
—'¢(a,kz) Am;
< = > - [Djkl:] ﬂ 1B (T11-7)
Hmz(a:kz) by
= 1
\ ¢(a, kZ)J Egm y
k¥ Iy (vye) (ulko ® Hy(2)(uya) 0 0 _1
ky | Jom e, ky Jou €
up_ ot _u (2)° mk,k “Tp(uia __mky¥o (2) .
) Em Y (we) SSEEREE e ()
o o <ulko> Ip{wa) <u1k > 5, () (uge)
ky JH€q ky JoHo€o
kgko?dp (ug2) k,mk 2Hm(2)(ula) G;_Q>2 U <ko> Wy (2)'(4
- PN A K om (ula) K E;Hm ( 1a)

(111-8)

Hence, the L-matrix of equation (56) is the product of the n + 1 matrices
5 1 2 P n n+l
o] BB Bl o

It is interesting to note that if the index of refraction of all the layers 1is
unity, the C-matrices are unit matrices.
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" TABIE T.- TABLES OF Eiﬁ;Ql_

g (B,O)

£1(B,0)

£(B,0)

FOR THE INHOMOGENEOUS

PLASMA GIVEN IN FIGURE 7

(a) £ =10.00 ge

8 g(B,0) £'(B,0)
g'(B:O) f(B:O)
0 0.0%5 + jO0.163 -0.42k - j0.84h
0.050 0.034 + jO.164 -0.427 - 30.8h42
0.100 0.03%0 + jO.166 -0.433 - j0.8%
0.150 0.023 + j0.168 -0.44L - j0.825
0.200 0.014 + jO.171 -0.460 - j0.811
0.225 0.009 + j.O172 -0.469 - 30.803
0.250 0.003 + jO.17h -0.480 - 30.793
0.275 -0.00% + jO.175 -0.492 - 30.783
0.300 -0.011 + jO.176 -0.504% - jO.7TT71
0.325 -0.018 + jO.176 -0.518 - j0.759
0.350 -0.026 + jO.176 -0.534 -~ jO.Th6
0.375 ~-0.034 + jO.176 -0.550 - jO.T32
0.400 -0.042 + jO.175 -0.568 - jO.T16
0.425 -0.050 + jO.173 -0.586 - jO.T00
0.450 -0.058 + jO.171 -0.606 - j0.684
0.475 -0.067 + jO.169 -0.627 - jO.666
0.500 -0.07h + jO.166 -0.650 - jO.64T
0.550 -0.089 + jO.159 -0.698 -~ j0.608
0.600 -0.103 + jO.150 -0.752 - jO.565
0.650 -0.11k + jO.1k1 -0.810 - jO0.520
0.700 -0.124k + jO.1%1 -0.874 - j0.471
0.800 -0.138 + jo.111 -1.016 - jO.36h
0.900 -0.147 + jO.093 -1.180 - jo.2hko
1.000 -0.152 + jo.082 -1.364 - j0.002
1.200 -0.156 + jO.0u8 -2.027 - jO.001
1.%00 -0.150 + j0.031 -2.508 - j0.001
1.600 -0.144 3+ jO.021 -2.966 - j0.001
1.800 -0.138 + j0.01hk -3.413% - j0.001
2.000 -0.133 + 3j0.010 -3.855 - jO.001
2.500 -0.121 + 30.005 -h.oh6 -~ 30.000
3.000 -0.110 + j0.002 -6.028 - j0.000
3.500 -0.101 + j0.00l -7.102 - jO.000
4,000 -0.092 + j0.001 -8.171 - j0.000
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TABLE I.- TABLES OF 54%4917- ap £B0)  FoR THE TNHOMOGENEOUS
g'(B,0 £(B,0

PLASMA GIVEN IN FIGURE 7 - Continued

(b) f =10.73 ge

8 g(B,0) £(8,0)
g'(B,0) £(8,0)
0 0.04k9 + 30.191 -0.29% - j0.970
0.050 0.04% + 3j0.195 -0.295 - jO.967
0.100 0.026 + j0.205 ~0.302 - j0.960
0.150 -0.002 + j0.215 -0.315 - jO.948
0.200 -0.041 + jo.221 -0.332 - j0.93%1
0.225 -0.062 + jO.220 -0.343 - j0.921
0.250 -0.08% + jo.216 -0.355 - j0.909
0.275 -0.103 + j0.210 -0.368 - j0.897
0. 300 -0.122 + j0.201 -0.382 - j0.883
0.3%25 -0.138 + j0.190 -0.398 - j0.868
0.3%50 -0.152 + j0.179 -0.415 - j0.852
0.375 -0.164 + 30.166 -0.434 - 30.835
0.400 -0.174 + jO.154 -0.45% -~ 30.817
0.425 -0.181 + jO.1lko -0.47h - 30.798
0.450 -0.187 + j0.131 -0.497 ~ 3O.778
0.475 -0.192 + j0.120 -0.521 - jO.757
0.500 -0.195 + j0.110 -0.546 - 3O.T35
0.550 -0.199 + j0.092 -0.601 ~ jO.688
0.600 -0.200 + j0.078 -0.662 - jO.637
0.650 -0.200 + jO.066 -0.728 - 30.584
0.700 -0.199 + jO.056 -0.801 - jo.s27
0.800 -0.196 + jo.Ook1 -0.964 - jO.Lk03
0.900 -0.191 + jO.031 -1.152 -~ 30.262
1.000 -0.187 + jO.024 -1.3%64 - 50.002
1.200 -0.178 + j0.014k -2.095 - jO.001
1.400 -0.169 + 30.008 ~-2.626 - jO.001
1.600 -0.161 + jO.005 ~-3.128 -~ 3j0.001
1.800 -0.153 + j0.003 -3.616 - 30.001
2.000 -0.145 4+ 30.002 -4.097 - 30.000
2.500 -0.128 + j0.000 -5.281 - j0.000
3.000 -0.11k + 30.000 -6.448 - 30.000
3.500 -0.102 + 30.000 -7.606 - jO.000
L. 000 -0.092 + j0.000 -8.756 - jO.000




. TABLE T.- TABLES OF 5@%&;-7. AND %%é?é?l FOR THE INHOMOGENEOUS

PIASMA GIVEN IN FIGURE 7 - Continued

(¢) f =10.8 gc

B g(B,0) £'(8,0)
g'(BJO) f(B)O)
0 0.070 + j0.200 -0.280 - j0.983
0.100 0.074 + j0.23%0 -0.290 - 30.973
0.200 0.055 + j0.349 -0.320 - 30.943
0.250 -0.020 + jO.hk6 -0.342 - 3j0.921
0.300 -0.188 + j0.498 -0.370 - 30.894
0.350 ~0.364 + j0.410 -0.40% -~ 30.863%
0.400 -0.b22 + j0.261 -0.4h2 - j0.827
0.450 ~0.402 + j0.153 -0.486 - 30.787
0.500 ~0.%5 + j0.093 -0.5% - 3O.T43
0.5%0 ~0.344 4+ j0.0T70 -0.469 - 30.715
0.570 -0.320 + j0.050 -0.615 - j0.676
0.600 ~0.304 + jO.03%9 -0.653 - j0.645
0.630 ~0.291 + jO.0%2 -0.69% - j0.612
0.670 ~0.275 + jO.02k -0.749 - 30.567
0.700 ~0.266 + j0.020 -0.794 -~ jO.53%2
0.725 ~0.259 + j0.017 -0.833 - j0.502
0.750 ~0.252 + j0.015 -0.873 - jo.h471
0.775 -0.246 + jO.013 -0.916 - jO.4ho
0.800 -0.241 + jo.011 -0.959 - j0.4OT7
0.820 -0.237 + j0.010 -0.995 - 30.380
0.840 -0.233 + j0.009 -1.0%2 - j0.353
0.860 ~0.230 + j0.008 -1.070 - jO.324
0.880 -0.226 + j0.008 -1.109 - j0.295
0.900 -0.223 + jO.00T7 -1.149 - 30.264
0.920 -0.221 + jO0.006 -1.190 - j0.232
0.940 -0.218 + jO.006 -1.232 - j0.197
0.960 -0.215 + j0.005 -1.275 - j0.157
0.970 -0.21k + j0.005 -1.297 - j0.135
0.980 -0.213 4+ 3j0.005 -1.319 - j0.109
0.990 -0.212 + j0.005 -1.341 - 30.077
0.995 -0.211 + jO.O0O04 -1.%52 - j0.055
1.000 -0.210 + 3O.00k -1.%64 - 30.002
1.200 -0.191 + j0.002 -2.102 - j0.001
1.500 -0.172 + jO.001 -2.893 - j0.001
2.000 -0.148 + j0.001 -4,121 - 30.000
2.500 -0.129 + j0.000 -5.313 - 30.000
3.000 -0.11k 4+ j0.000 -6.488 - j0.000
3.500 -0.102 + j0.000 -7.654 ~-30.000
4,000 -0.092 + j0.000 -8.812 - j0.000
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TABIE T.- TABLES oF &(B20)_

g' (B)O)

£'(B,0)
£(B,0)

FOR THE INHOMOGENEOUS

PLASMA GIVEN IN FIGURE 7 - Concluded

(8) f = 11.h gc

B g(B,0) £'(8,0)
g'(B,0) T(B,0
0 0.030 + jO.194 -0.168 - 3j1.099
0.050 0.031 + j0.196 -0.170 - j1.096
0.100 0.0%3 + j0.202 -0.178 - j1.087
0.150 0.037 + jO0.212 -0.192 - j1.073
0.200 0.041 + 30.228 -0.211 - jl1.053
0.225 0.0hklk + 30.23%8 -0.222 - jl.okl
0.250 0.046 + jo.251 -0.235 - jl1.028
0.275 0.048 + jO.265 -0.250 - j1.013
0.300 0.050 + 30.283 -0.266 - 30.997
0.325 0.050 + jO.30k4 -0.283 - jO.979
0. 350 0.049 + JO.329 -0.302 - jO.960
0.375 0.044 + 30.358 -0.3%22 - 30.940
0.400 0.035 + jO.392 -0.34k - j0.919
0.425 0.019 + jo.431 -0.%7 - j0.897
0.450 -0.008 + jO.h7h -0.392 - 30.873
0.475 -0.049 + j0.518 -0.418 - 30.849
0.500 -0.108 + jo.558 -0. 446 - 30.823
0.550 -0.277 + j0.588 -0.507 - JO.T768
0.600 -0.449 + 3j0.502 -0.575 - j0.T710
0.650 -0.529 + jO.346 -0.649 - 30.648
0.700 -0.520 + 30.210 -0.73% - 3j0.582
0.800 -0.429 + jO.0T71 -0.91% - 50.441
0.900 -0.353 4+ j0.024 -1.125 - j0.283%
1.000 -0.303 + j0.002 -1.36Lk - 30.002
1.200 -0.239 + jO.00l -2.160 - 30.001
1.400 -0.208 + j0.001 -2.737 - 30.001
1.600 -0.187 + 3j0.000 -3.279 - j0.001
1.800 -0.170 + 30.000 -3.805 - j0.000
2.000 ~0.157 + jO.000 -L.322 - 30.000
2,500 -0.1%3 4+ 30.000 -5.589 - 3j0.000
3.000 -0.115 + jO.000 -6.8% - j0.000
3.500 -0.101 + j0.000 -8.069 - j0.000
L. 000 -0.091 + jO.000 -9.294 - 3j0.000
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Figure T.- Typical reentry plasma profile.
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Figure 1l.- Equatorial patterns of coated axially slotted cylinders.
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